EE 330 Lecture 13

Devices in Semiconductor Processes

- Resistors
- Diodes
- Capacitors
- MOSFETs
- BJTs

Fall 2023 Exam Schedule

Exam 1 Friday Feb 16

Basic Semiconductor Processes

MOS (Metal Oxide Semiconductor)

1. NMOS n-ch

2. PMOS p-ch

3. CMOS n-ch & p-ch

Basic Device: MOSFET

Niche Device: MESFET

Other Devices: Diode

BJT (Bipolar Junction Transistor)

JFET (Junction Field Effect Transistor)

Resistors Capacitors

Schottky Diode

Basic Semiconductor Processes

Bipolar

- 1. T^2L
- 2. ECL
- 3. I^2L
- 4. Linear lcs

Basic Device: BJT (Bipolar Junction Transistor)

Niche Devices: HBT (Heterojunction Bipolar Transistor)

Other Devices: Diode

Resistor Capacitor

Schottky Diode

JFET (Junction Field Effect Transistor)

Basic Semiconductor Processes

Other Processes

- Thin and Thick Film Processes
 - Basic Device: Resistor
- BiMOS or BiCMOS
 - Combines both MOS & Bipolar Processes
 - Basic Devices: MOSFET & BJT
- SiGe
 - BJT with HBT implementation
- SiGe / MOS
 - Combines HBT & MOSFET technology
- SOI / SOS (Silicon on Insulator / Silicon on Sapphire)
- Twin-Well & Twin Tub CMOS
 - Very similar to basic CMOS but more optimal transistor char.

Devices in Semiconductor Processes

- Standard CMOS Process
 - MOS Transistors
 - n-channel
 - p-channel
 - Capacitors
 - Resistors
 - Diodes
 - BJT (decent in some processes)
 - npn
 - pnp
 - JFET (in some processes)
 - n-channel
 - p-channel
- Standard Bipolar Process
 - BJT
 - npn
 - pnp
 - JFET
 - n-channel
 - p-channel
 - Diodes
 - Resistors
 - Capacitors
- Niche Devices
 - Photodetectors (photodiodes, phototransistors, photoresistors)
 - MESFET
 - HBT
 - Schottky Diode (not Shockley)
 - MEM Devices
 - TRIAC/SCR
 - ...

Basic Devices

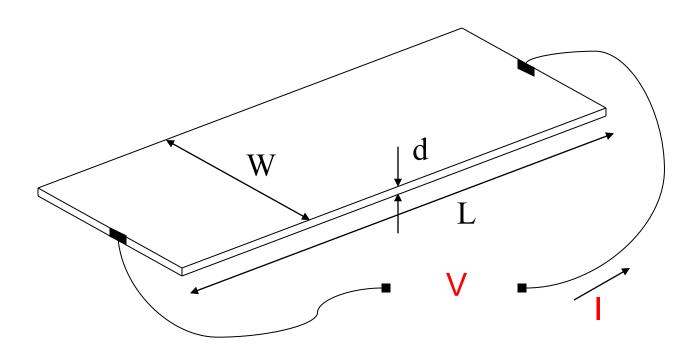
Standard CMOS Process **MOS Transistors** n-channel p-channel **Capacitors Primary Consideration** Resistors Diodes in This Course BJT (decent in some processes) npn pnp JFET (in some processes) n-channel p-channel **Standard Bipolar Process BJT** npn Some Consideration in pnp **JFET This Course** n-channel p-channel (devices are available in some CMOS processes) Diodes Resistors Capacitors **Niche Devices** Photodetectors (photodiodes, phototransistors, photoresistors) **MESFET HBT** Schottky Diode (not Shockley) **MEM Devices** Some Consideration in TRIAC/SCR **This Course**

Basic Devices and Device Models

- Resistor
- Diode
- Capacitor
- MOSFET
- BJT
- JFET
- MESFET

Basic Devices and Device Models

- Diode
- Capacitor
- MOSFET
- BJT

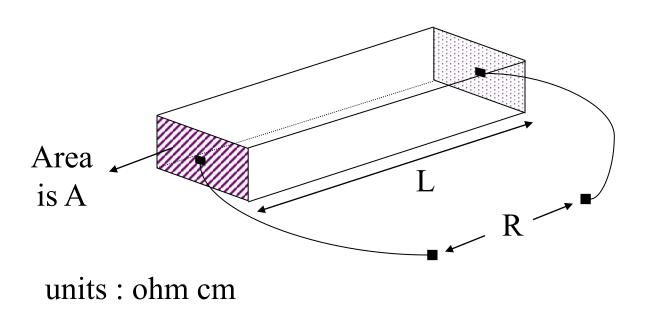

Resistors were discussed when considering interconnects so will only be briefly reviewed here

Resistors

- Generally thin-film devices
- Almost any thin-film layer can be used as a resistor
 - Diffused resistors
 - Poly Resistors
 - Metal Resistors
 - "Thin-film" adders (SiCr or NiCr)
- Subject to process variations, gradient effects and local random variations
- Often temperature and voltage dependent
 - Ambient temperature
 - Local Heating
- Nonlinearities often a cause of distortion when used in circuits
- Trimming possible resistors
 - Laser, links, switches

Have already modeled resistance as an interconnect Modeling is the same as for a resistor so will briefly review

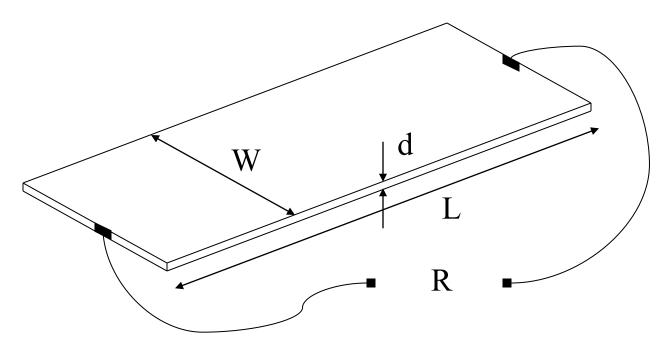
Resistor Model



Model:

$$R = \frac{V}{I}$$

Resistivity


Volumetric measure of conduction capability of a material

$$\rho = \frac{AR}{L}$$

for homogeneous material, $\rho \perp A$, R, L

Sheet Resistance

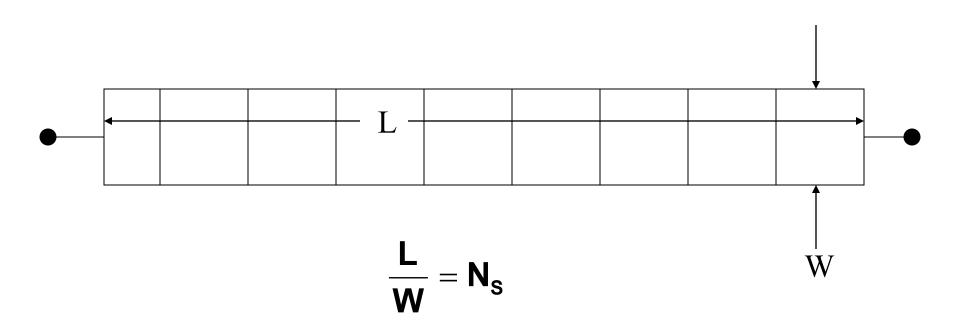
$$R_{\square} = \frac{RW}{L}$$
 (for d << w, d << L) units : ohms / \square

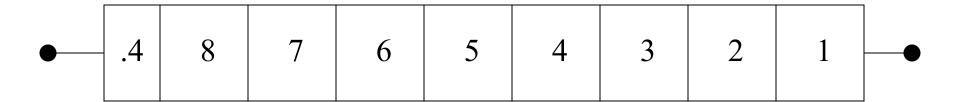
for homogeneous materials, R_{\pi} is independent of W, L, R

Relationship between ρ and $R_{\mathbb{P}}$

$$R_{\square} = \frac{RW}{L}$$

$$\rho = \frac{AR}{L}$$

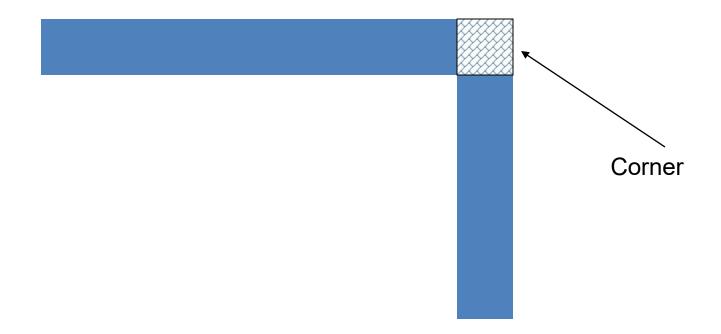

$$\rho = \frac{A}{W}R_{\square}$$


$$A = W \times d$$

$$\rho = \frac{A}{W}R_{\square} = \frac{W d}{W}R_{\square} = d \times R_{\square}$$

Number of squares, N_s, often used instead of L / W in determining resistance of film resistors

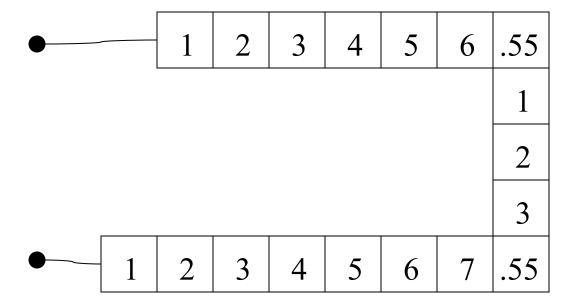
R = ?



$$R = ?$$

$$N_{S} = 8.4$$

$$R = R_{1}(8.4)$$


Corners in Film Resistors

Rule of Thumb: .55 squares for each corner

Determine R if $R_{\Box} = 100 \Omega / \Box$

$$N_S$$
=17.1
 $R = (17.1) R_{\Box}$
 $R = 1710 \Omega$

Resistivity of Materials used in Semiconductor Processing

• Cu: $1.7E-6 \Omega cm$

• Al: $2.7E-6 \Omega cm$

• Gold: $2.4E-6 \Omega cm$

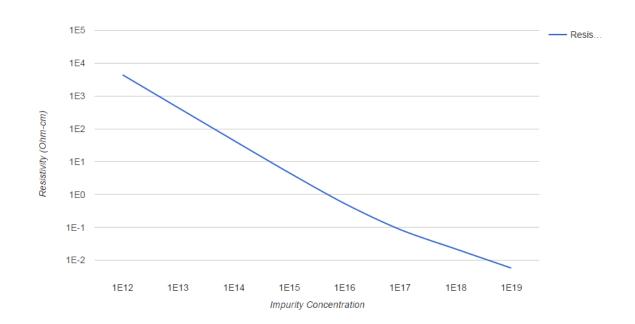
• Platinum: $1.1E-5 \Omega cm$

• Polysilicon: 1E-2 to 1E4 Ω cm*

• n-Si: typically .25 to 5 Ω cm* (but larger range possible)

• intrinsic Si: $2.5E5 \Omega cm$

• SiO_2 : E14 Ω cm

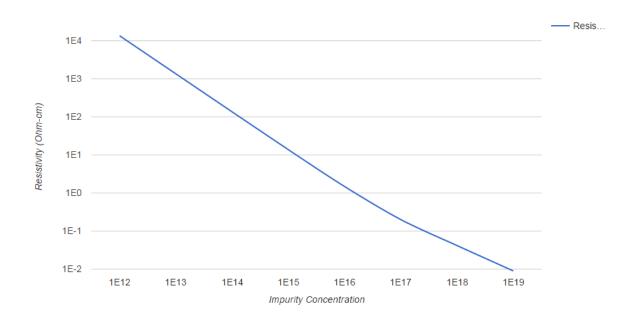

^{*} But fixed in a given process

http://www.cleanroom.byu.edu/ResistivityCal.phtml

Resistivity & Mobility Calculator/Graph for Various Doping Concentrations in Silicon

Dopant:	Arsenic Boron Phosphorus
Impurity Concentration:	1e15 (cm ⁻³)
	Calculate Export to CSV
Mobility:	$1358.6941377290254 \hspace{35pt} [cm^2/V-s]$
Resistivity:	$4.593746148183427 \hspace{3.1em} [\Omega\text{-cm}]$

Calculations are for a silicon substrate.

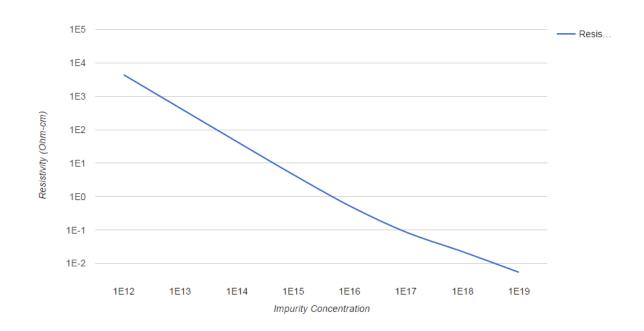


http://www.cleanroom.byu.edu/ResistivityCal.phtml

Resistivity & Mobility Calculator/Graph for Various Doping Concentrations in Silicon

Dopant:	ArsenicBoronPhosphorus	
Impurity Concentration:	1e15 (cm ⁻³)	
	Calculate Export to CSV	
Mobility:	461.9540345952693 [c	m ² /V-s
Resistivity:	13.511075765839905	l-cm]

Calculations are for a silicon substrate.



http://www.cleanroom.byu.edu/ResistivityCal.phtml

Resistivity & Mobility Calculator/Graph for Various Doping Concentrations in Silicon

Dopant:	Arsenic Boron Phosphorus	
mpurity Concentration:	1e15 (cm ⁻³)	
	Calculate Export to CSV	
Mobility:	1362.0563795030084	[cm ² /V-s]
Resistivity:	4.582406466925789	[Ω-cm]

Calculations are for a silicon substrate.

Temperature Coefficients

Used for indicating temperature sensitivity of resistors & capacitors For a resistor:

$$TCR = \left(\frac{1}{R} \frac{dR}{dT}\right)_{\text{op. temp}} \bullet 10^6 \text{ ppm/}^{\circ}C$$

This differential eqn can easily be solved if TCR is a constant

$$R(T_2) = R(T_1)e^{\frac{T_2 - T_1}{10^6}TCR}$$
 If x is small, $e^x \cong 1 + x$

It follows that If $TCR*(T_2-T_1)$ is small,

$$R(T_2) \approx R(T_1) \left[1 + (T_2 - T_1) \frac{TCR}{10^6} \right]$$

Identical Expressions for Capacitors

Voltage Coefficients

Used for indicating voltage sensitivity of resistors & capacitors

For a resistor:

$$VCR = \left(\frac{1}{R}\frac{dR}{dV}\right)_{\text{ref voltage}} \bullet 10^6 \text{ ppm/V}$$

This diff eqn can easily be solved if VCR is a constant

$$\mathbf{R}(\mathbf{V_2}) = \mathbf{R}(\mathbf{V_1}) e^{\frac{\mathbf{V_2} - \mathbf{V_1}}{10^6} \mathbf{VCR}}$$

It follows that If $VCR*(V_2-V_1)$ is small,

$$R(V_2) \approx R(V_1) \left[1 + (V_2 - V_1) \frac{VCR}{10^6} \right]$$

Identical Expressions for Capacitors

Temperature and Voltage Coefficients

- Temperature and voltage coefficients often quite large for diffused resistors
- Temperature and voltage coefficients often quite small for poly and metal film (e.g. SiCr) resistors

V V

Type of layer	Sheet Resistance Ω/□	Accuracy (absolute)	Temperature Coefficient ppm/°C	Voltage Coefficient ppm/V
n + diff	30 - 50	20 - 40	200 - 1K	50 - 300
p + diff	50 -150	20 - 40	200 - 1K	50 - 300
n - well	2K - 4K	15 - 30	5K	10K
p - well	3K - 6K	15 - 30	5K	10K
pinched n - well	6K - 10K	25 - 40	10K	20K
pinched p - well	9K - 13K	25 - 40	10K	20K
first poly	20 - 40	25 - 40	500 - 1500	20 - 200
second poly	15 - 40	25 - 40	500 - 1500	20 - 200

(relative accuracy much better and can be controlled by designer)

MOS Passive RC Component Typical Performance Summary

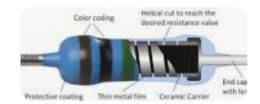
Component Type	Range of Values	Absolute Accuracy	Relative Accuracy	Temperature Coefficient	Voltage Coefficient
MOSFET gate Cap.	6-7 fF/μm ²	10%	0.1%	20ppm/°C	±20ppm/V
Poly-Poly Capacitor	$0.3 \text{-} 0.4 \text{ fF/} \mu\text{m}^2$	20%	0.1%	25ppm/°C	$\pm 50 ppm/V$
Metal-Metal Capacitor	0.1 -1fF/ μ m ²	10%	0.6%	-40ppm/°C	±1ppm/V
Diffused Resistor	10-100 Ω/sq.	35%	2%	1500ppm/°C	200ppm/V
Ion Implanted Resistor	0.5 -2 k Ω /sq.	15%	2%	400ppm/°C	800ppm/V
Poly Resistor	30-200 Ω/sq.	30%	2%	1500ppm/°C	100ppm/V
n-well Resistor	1-10 kΩ/sq.	40%	5%	8000ppm/°C	10kppm/V
Top Metal Resistor	30 mΩ/sq.	15%	2%	4000ppm/°C	-
Lower Metal Resistor	70 mΩ/sq.	28%	3%	4000ppm/°C	

Table 2.4-1 Approximate Performance Summary of Passive Components in a 0.18 μm CMOS Process

Component Type	Typical Value	Typical Matching Accuracy	Temperature Coefficient	Voltage Coefficient
MiM capacitor	$1.0 \text{ fF/}\mu\text{m}^2$	0.03%	50 ppm/°C	50 ppm/V
MOM capacitor	$0.17 \text{ fF/}\mu\text{m}^2$	1%	50 ppm/°C	50 ppm/V
P ⁺ Diffused resistor (nonsilicide)	80–150 Ω/□	0.4%	1500 ppm/°C	200 ppm/V
N ⁺ Diffused resistor (non-silicide)	50–80 Ω/□	0.4%	1500 ppm/°C	200 ppm/V
N ⁺ Poly resistor (non-silicide)	300 Ω/□	2%	−2000 ppm/°C	100 ppm/V
P ⁺ Poly resistor				
(non-silicide)	300 Ω/□	0.5%	−500 ppm/°C	100 ppm/V
P Poly resistor			• • • • • •	11
(non-silicide)	1000 Ω/□	0.5%	−1000 ppm/°C	100 ppm/V
n-well resistor	1–2 kΩ/□		8000 ppm/°C	10k ppm/V

MOS Passive RC Component Performance Summary

Component Type	Range of Values	Absolute Accuracy	Relative Accuracy	Temperature Coefficient	Voltage Coefficient
Poly-oxide-semi- conductor Capacitor	0.35-0.5 fF/μm ²	10%	0.1%	20ppm/°C	±20ppm/V
Poly-Poly Capacitor	0.3-0.4 fF/μm ²	20%	0.1%	25ppm/°C	±50ppm/V
Diffused Resistor	10-100 Ω/sq.	35%	2%	1500ppm/°C	200ppm/V
Ion Implanted Resistor	0.5-2 kΩ/sq.	15%	2%	400ppm/°C	800ppm/V
Poly Resistor	30-200 Ω/sq.	30%	2%	1500ppm/°C	100ppm/V
n-well Resistor	1-10 kΩ/sq.	40%	5%	8000ppm/°C	10kppm/V


Layer	R/□ [Ω/□]	T _C [ppm/°C] @ T = 25 °C	V _c [ppm/V]	B _c [ppm/V]
N+ poly	100	-800	50	50
P+ poly	180	200	50	50
N+ diffusion	50	1500	500	-500
P+ diffusion	100	1600	500	-500
N-well	1000	-1500	20,000	30,000

Lingkai Kong

EECS240

How does TCR of Integrated Resistors Compare with Low-Cost Discrete Resistors?

Metal film resistors are available with tolerances of 0.1, 0.25, 0.5, 1 and 2%. The temperature coefficient of resistance (TCR) is usually between 50 and 100 ppm/°C.

Integrated resistors typically have a much larger TCR but there are some special processes that provide resistors with excellent thermal stability (\$\$\$) Example: Determine the percent change in resistance of a 5K Polysilicon resistor as the temperature increases from 30°C to 60°C if the TCR is constant and equal to 1500 ppm/°C

$$R(T_{2}) \cong R(T_{1}) \left[1 + (T_{2} - T_{1}) \frac{TCR}{10^{6}} \right]$$

$$R(T_{2}) \cong R(T_{1}) \left[1 + (30^{\circ}C) \frac{1500}{10^{6}} \right]$$

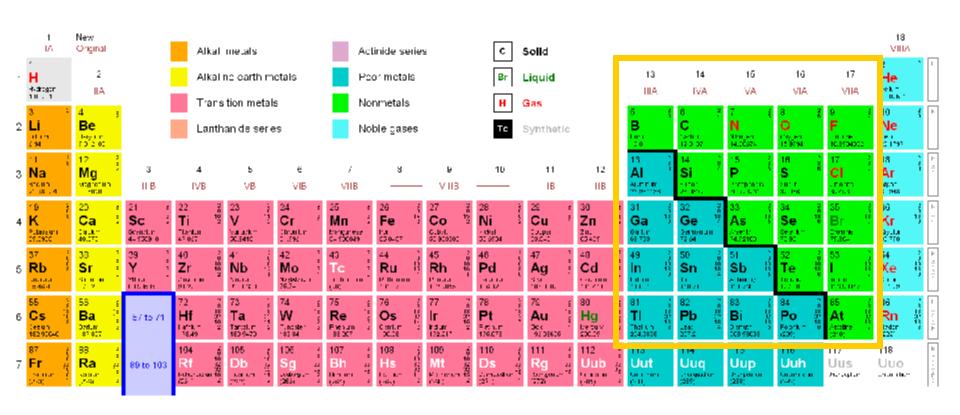
$$R(T_{2}) \cong R(T_{1}) [1 + .045]$$

$$R(T_2) \cong R(T_1)[1.045]$$

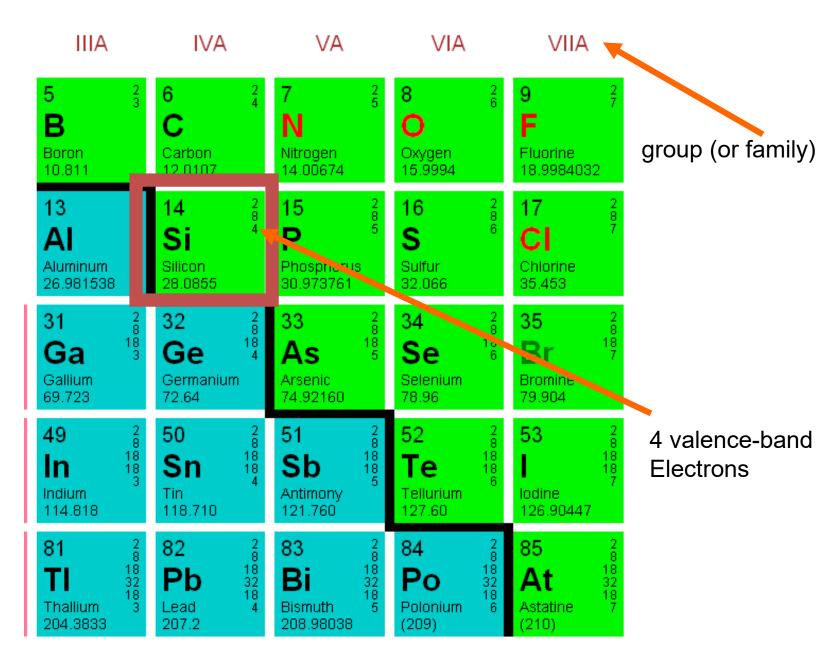
Thus the resistor increases by 4.5%

Did not need R(T₁) to answer this question!

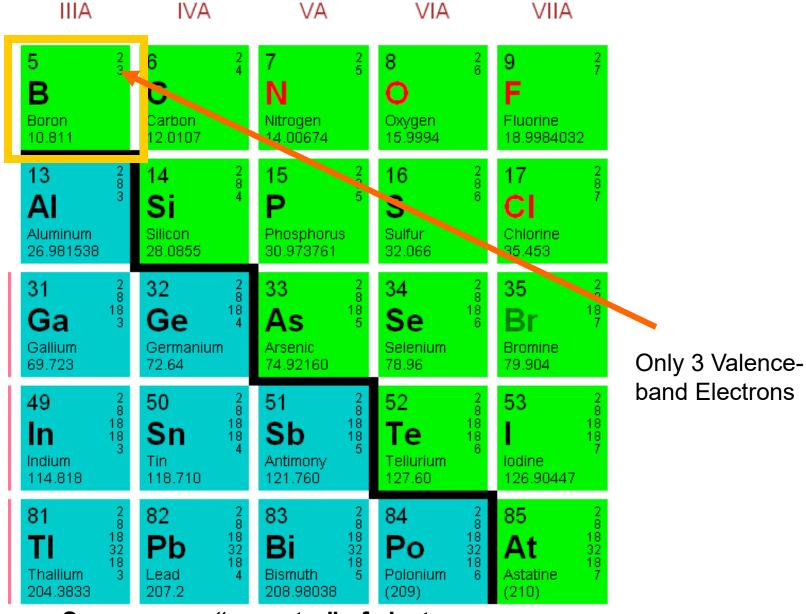
What is $R(T_1)$ as stated in this example ? 5K? It is around 5K but if we want to be specific, would need to specify T


Basic Devices and Device Models

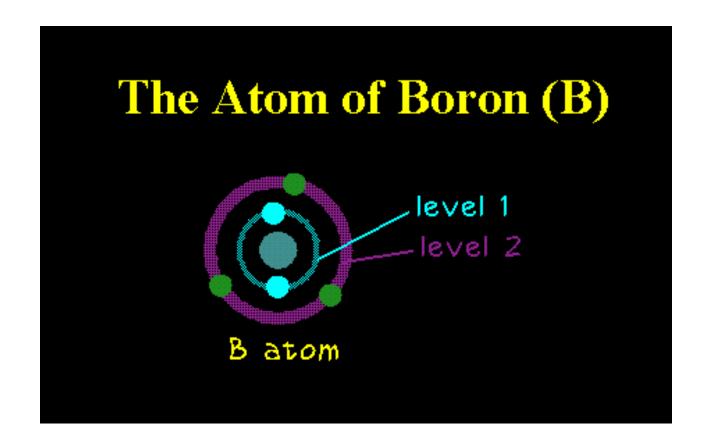
Resistor

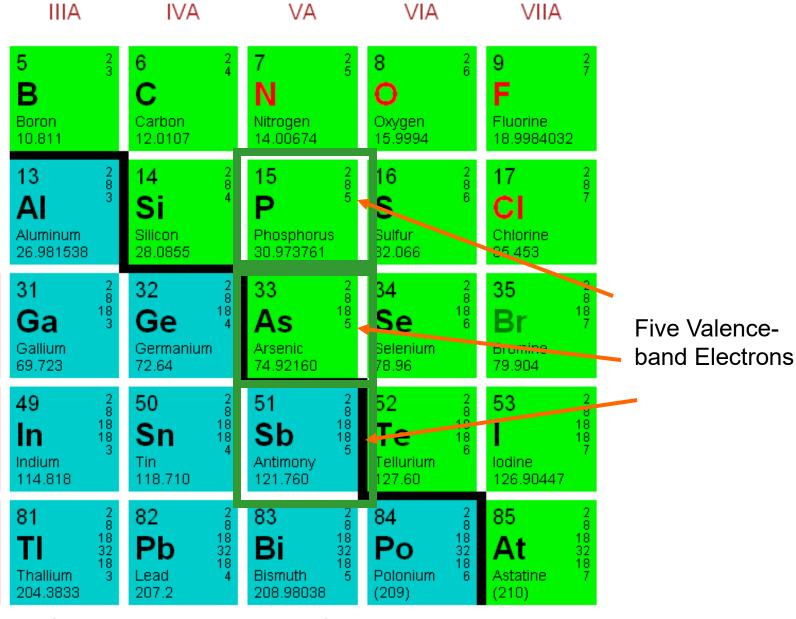


- Capacitor
- MOSFET
- BJT


Periodic Table of the Elements

IIIA	IVA	VA	VIA	VIIA
5 2 8 Boron 10.811	6 2 C Carbon 12.0107	7 2 N Nitrogen 14.00674	8 2 6 Oxygen 15.9994	9 ² / ₇ Fluorine 18.9984032
13 2 8 3 3 Aluminum 26.981538	14 2 Si Silicon 28.0855	15 2 8 5 P Phosphorus 30.973761	16	17 2 8 7 CI Chlorine 35.453
31 2 8 18 3 18 3 Gallium 69.723	32 8 18 18 4 Germanium 72.64	33 As Arsenic 74.92160	34	35 Br Bromine 79.904
49 8 18 18 18 18 18 18 18 18 18 18 18 18 1	50 Sn 18 18 18 18 18 18 18 18 18	51 Sb Antimony 121.760	52 2 8 18 18 18 18 18 18 18 18 18 18 18 18 1	53 2 8 18 18 18 18 7 lodine 126.90447
81 2 8 18 18 32 18 18 32 18 18 32 204.3833	82 2 Pb 18 18 32 18 Lead 4 207.2	83 2 8 Bi 18 32 18 Bismuth 5 208.98038	84 2 8 18 32 18 90 6 (209)	85 2 8 At 18 32 18 Astatine 7 (210)

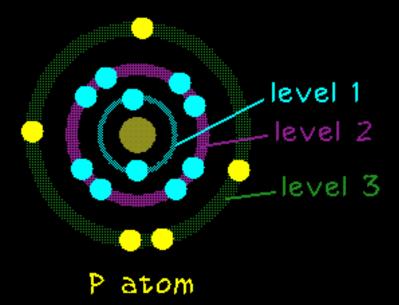

All elements in group IV have 4 valence-band electrons


Serves as an "acceptor" of electrons

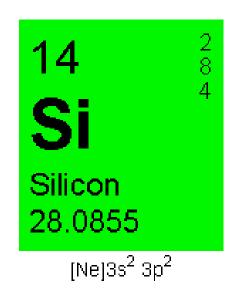
Acts as a p-type impurity when used as a silicon dopant

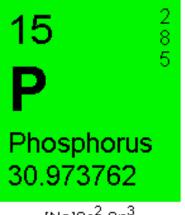
All elements in group III have 3 valence-band electrons

http://www.oftc.usyd.edu.au/edweb/devices/semicdev/doping4.html

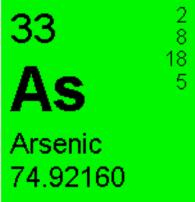


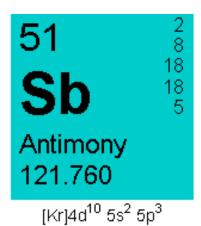
Serves as an "donor" of electrons


Acts as an n-type impurity when used as a silicon dopant


All elements in group V have 5 valence-band electrons

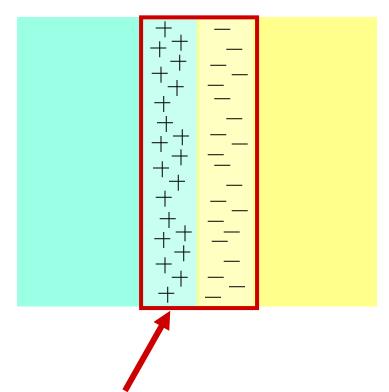
The Atom of Phosphorus (P)





_{[Na12a}2 aa3

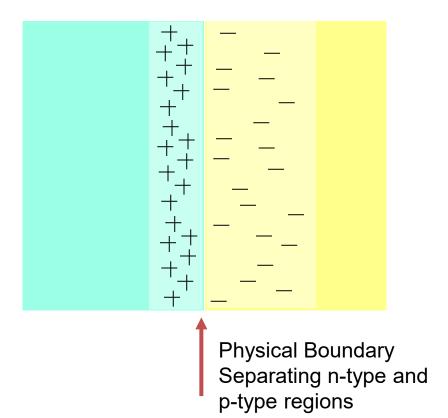
[Ar]3d¹⁰ 4s² 4p³


Silicon Dopants in Semiconductor Processes

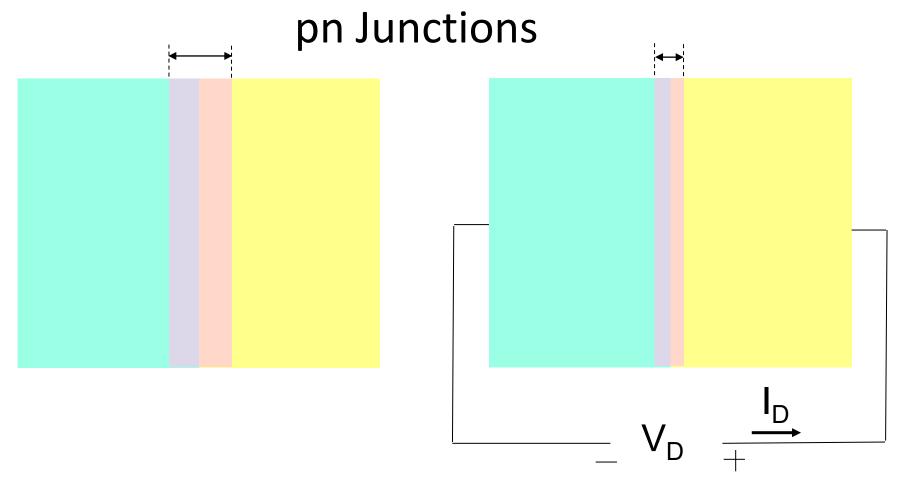
B (Boron) widely used dopant for creating p-type regions

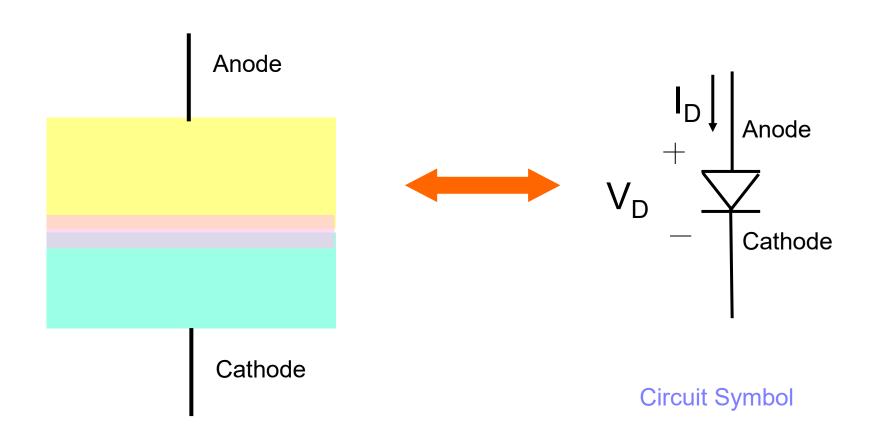
P (Phosphorus) widely used dopant for creating n-type regions (bulk doping, diffuses fast)

As (Arsenic) widely used dopant for creating n-type regions (Active region doping, diffuses slower)

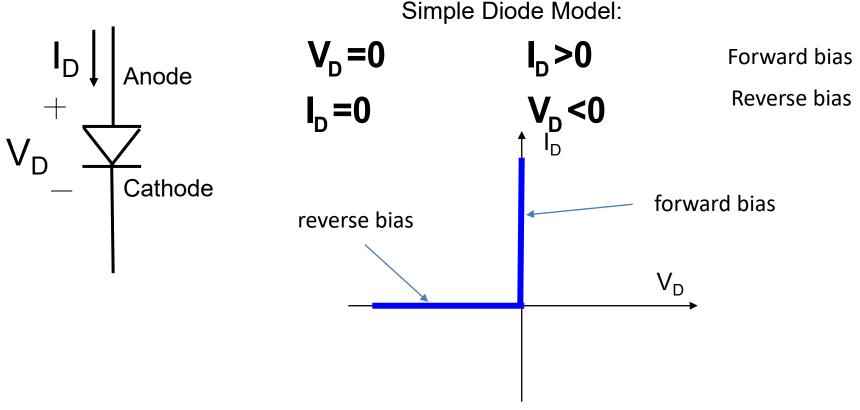

Diodes (pn junctions)

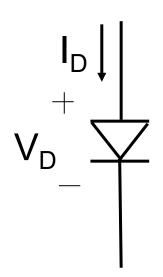
Depletion region created that is ionized but void of carriers

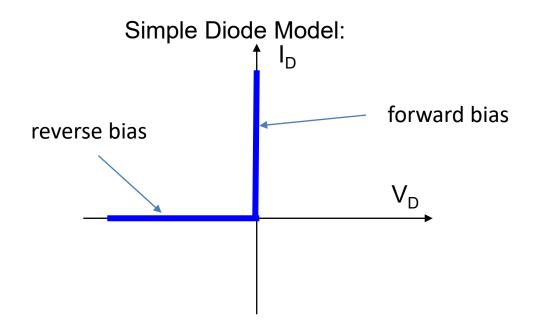

If doping levels identical, depletion region extends equally into n-type and p-type regions


Extends farther into p-type region if p-doping lower than n-doping

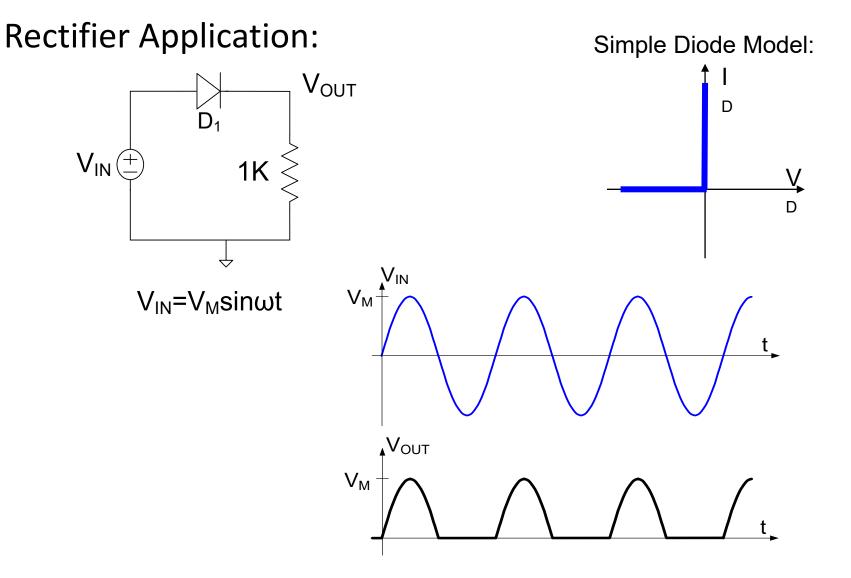
Physical Boundary Separating n-type and p-type regions


Extends farther into n-type region if n-doping lower than p-doping


- Positive voltages across the p to n junction are referred to forward bias
- Negative voltages across the p to n junction are referred to reverse bias
- As forward bias increases, depletion region thins and current starts to flow
- Current grows very rapidly as forward bias increases
- Current is very small under revere bias



- As forward bias increases, depletion region thins and current starts to flow
- Current grows very rapidly as forward bias increases



Simple model often referred to as the "Ideal" diode model

pn junction serves as a "rectifier" passing current in one direction and blocking it in the other direction

Analysis based upon "passing current" in one direction and "blocking current" in the other direction

Stay Safe and Stay Healthy!

End of Lecture 13